4.5 The Density Parameter (o
We can define a density parameter, ( that determines the geometry of the Universe as an alternative to k.  Friedmann equation
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We define a critical density (c as the density required to make the geometry flat i.e. k = 0 for a given value of H:
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(4.3)

This gives a present day critical density (c(to)
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where we have used eqn (4.1) to parameterise Ho = 100 h.  This is the density required for a flat universe – very small numbers!

We can convert this into ‘astronomical’ units, then 
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(h-1  present to give h2)

(4.5)

and considering 1011 - 1012 M
[image: image5.wmf]e

 is the mass of a typical large galaxy, and galaxies are separated by ~ 1 Mpc, we see that the universe must be fairly close to the critical density.  

Note: Since the the Universe may not possess the critical density, the critical density is not necessarily the true density of the Universe.  It does, however, set a natural scale and any observationally determined density is always quoted relative to the critical density.

This dimensionless quantity is known as the density parameter ( and is defined by 
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(4.6)

and the present day value is denoted by (o.

We can now re-write the Friedmann equation as given in (4.2) using (4.3) and (4.6)
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(4.7)

re-arranging gives:
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(4.8)

The case when ( = 1 is very special because then k = 0 and since k is a fixed constant, this equation gives ( = 1 for all time.

This type of universe is called a “critical density universe”

When ( ( 1 (4.8) can be used to analyse the evolution of ( with time.  (( - 1) then becomes a function of time.

In summary

1) Open universe:  0 < ( < 1; 
k < 0 

( < (c

(hyperbolic)

2) Flat universe:      ( = 1, 
k = 0

( = (c
3) Closed universe: ( > 1;
k > 1 

( > (c

(spherical)

Note: the implicit assumption above is that the density parameter ( refers to the mass density of the universe.  But: recent observations (see later) imply that ( =1 (k = 0), but (m = 0.3 (mass density parameter), and (( = 0.7 (energy density parameter).  This energy density acts to expand the universe.  Total is ( = (m + (( = 1.

4.6 The Deceleration Parameter, qo
qo quantifies the way the Hubble parameter is changing with time.  If we consider a Taylor series expansion of the scale factor about the present time, then
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(4.9)

Divide through by a(to) and remembering H = 
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(4.10)

which defines qo as 
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(4.11)

so the larger the value of qo, the more rapid the deceleration.

For a matter-dominated universe with pressure P = 0, the acceleration equation is given by
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and with P = 0 reduces to
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and using (4.3)
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qo = 
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(4.12)

So if we could measure qo, we could immediately determine (o.

Since qo depends on Ho and (o, these two parameters are sufficient to describe the universe we live in, if we know the properties of the matter and energy in the universe.

qo can be measured directly by observing objects at large cosmological distances since the amount of deceleration governs the size of the Universe at an earlier time.

e.g. at z = 0.5 (d ~ 6000 Mpc), the difference in the observed brightness of a “standard candle” between a universe with (m = 1 and (m = 0 (i.e. a flat matter-dominated universe compared to an empty matter-dominated universe) is 25 % brighter for (m = 1.

Now observed scatter in brightness of Type Ia supernovae is 15 % ( detect SNe at z = 0.5 and should be able to determine qo.

Two research groups have done just that - using large amounts of telescope time, they have detected 42 Type Ia supernovae up to z ~ 1.

They find that the SNe are 25 % dimmer than nearby SNe.  This means that over the last 8 billion years that the light from these supernovae has been travelling towards us, the change in rate of expansion of the Universe must have increased, rather than  decreased, i.e. qo is negative so the universe is accelerating in its expansion rate.

The only way to explain this is by introducing the Cosmological Constant, (.

[Perlmutter et al, ApJ 517,565, 1998 – Supernova Cosmology Project]

Results of the Type Ia Supernovae Study

Database of 42 Type Ia SNe with z ~ 0.18 to 0.83

Best model fit to changing apparent brightness (mB) with redshift, z assuming ( = 1 and k = 0 (as determined by the Boomerang experiment – see later).  With (m + (( = 1 

(m = 
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at the current epoch

(( is non-zero and positive = 0.7 for k = 0

Age of the Universe, to = 14.9
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4.7 The Cosmological Constant, (
( appears in the Friedmann equation when it is derived using GR as an extra term:
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(4.13)

and has units of [time]-1.

The ( term is usually considered for universes with k = 0.  It is positive and represents the energy density of the vacuum.  Quantum Mechanics predicts that the vacuum is not really empty but has an energy associated with it since particle / anti-particle pairs are continually being created out of the vacuum.  They exist very briefly before annihilating each other.  Thus, although the vacuum has the lowest energy of any state, its energy is non-zero.  The vacuum energy is unobservable (too small to measure).

In GR, any form of energy affects the gravitational field, so the vacuum energy becomes a crucial ingredient.  We can assume that the vacuum is the same everywhere in the universe, so the vacuum energy density is a universal number – the Cosmological constant, (.  It is a property of space-time itself.

( = 
[image: image21.wmf]2

8

3

G

c

pr

L






(4.14)

In the equations of GR, ( behaves like a negative pressure and creates a repulsive gravitational field.  In a universe containing both matter and vacuum energy, there is a competition between the tendency of ( to cause the expansion to accelerate versus the tendency of the gravitational pull of matter to slow or decelerate the expansion of the universe.
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from 4.13
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(4.15)

The ultimate fate of the Universe depends on the precise amounts of each component.

If k ( 0, then with a ( term and k < 0 the open hyperbolic geometry implies it will expand forever; for k > 0 the closed geometry usually implies that it will re-collapse.  It is even possible to have a static universe.

We can normalize ( as we did for ( when we write it as a fraction of the critical density (c by defining

(( = 
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from     (4.15)

Although ( is constant , (( varies with time because of H.

Repeating steps to re-write the FE in the form of (4.8) - using 4.13, 4.3, 4,6 and 4.15 we can obtain


[image: image28.wmf]22

1

m

k

aH

L

W+W-=







(4.16)

and thus, for k = 0, (m + (( = 1

Also, for a pressureless universe with ( ( 0 has
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(4.17)

From the SN Ia Project, (m = 0.3 and (( = 0.7 for k = 0 

This raises the fundamental problem:  Why are we at the epoch when (m ~ ((?

As the Universe expands, 
[image: image30.wmf]3

1

m

a

r

µ

 while (( remains constant, thus 
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.  To have approximate equality now, requires a remarkable degree of fine tuning.  The initial conditions require the ratio of densities ~ 10-100 in order for the densities to coincide today.

The cross-over point from a matter-dominated to a (-dominated universe occurred at z = 0.37 for a flat (m = 0.28 universe.  This corresponds to about 5 Gyr ago (close to when the Solar System was formed).

The second fundamental problem is that the observed value of ( corresponds to a very small energy density relative to that predicted by particle physics.

Predicted value ~ 10120 ( energy contained in all matter in the universe.  Why is ( so small, but non-zero?

We have to assume that there was a large cancelling effect due to symmetry in particle physics.

Our understanding of the principles underlying the calculation of the Cosmological Constant, ( is insufficient - (need a theory of quantum gravity?)

If the recent observational results are confirmed for a non-zero (, we will be faced with the additional task of inventing a theory which sets the vacuum energy to a very small value without setting it precisely to zero.

Remember:

Matter is one form of energy.  In GR, the source of gravitational forces is energy, and these forces can be either attractive or repulsive.  The repulsive force associated with ( operates in the absence of matter or radiation – it operates in the vacuum.

Acceleration equation:
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thus for 
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P < 
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i.e. we need a negative pressure or a repulsive gravitational field and this is (.

4.8 The Geometry of the Universe

The COBE Satellite detected temperature variations in the cosmic microwave background (CMB) radiation at a level of 1(10-5 K. 

These fluctuations correspond to the structures that were present when the CMB was formed – Map density fluctuations (14 billion years ago).

The three geometries we have discussed have quite different effects on perspective

· lines stay parallel for k = 0; converge for k > 1, and diverge if k <1.

Depending on the geometry of our universe, the appearance of features in the CMB will have different distortions.

If the Universe has zero curvature (k = 0) the undulations in the CMB should be about 1o across.  If k < 1 (open universe) the same features should appear as half the size because light rays are geometrically distorted.  [Angular size shrinks much more rapidly with distance than in Euclidean space.]

All we have to do is measure the size of the ripples in the CMB and we will know the Universe’s geometry.  COBE could only measure angular sizes down to 5o, so there are many current experiments and satellites being planned to map the CMB at a resolution ~ 1o.

Recently, on its maiden voyage, the BOOMERANG Telescope has produced the first images of the CMB with the required resolution ~ 1o.

The BOOMERANG Telescope is a balloon-borne instrument which is launched from Antarctica to an altitude of 120,000 ft.  The weather conditions (continuous sunlight + air currents) in Antarctica allow the balloon to stay aloft for 10 days and obtain the high precision required to measure the temperature of the CMB and detect fluctuations.

It mapped 2.5% of the sky at a resolution 35 ( that of COBE.  Measurements of the peak-to-peak sizes in the CMB power spectrum show that they have scales of ~ 1o.

( 0.88 < (o < 1.12 
where ( = (m + ((
for various assumptions (h = 0.64, to > 10 Gyr, etc.)

Assuption-free results will be obtained by the WMAP and Planck satellites.

From the Supernova Cosmology Project and BOOMERANG results:

(m = 0.3, (( = 0.7, (m + (( = 1 and the universe is spatially flat.

Note: the BOOMERANG results give: (m + ((
SNe results: 



    (m - ((  

- Orthogonal

Both results combined give very tight limits or constraints.

4.9 The Age of the Universe 

The simplest estimate is to use the timescale associated with the Hubble parameter since this has units of [time]-1
Ho = 100 h kms-1 Mpc-1






(4.18)

And change units: 
 
Ho-1 = 9.77 h-1 ( 109 Yrs


(4.19)

This is known as the Hubble time.  Uncertainties in the value of Ho – can say 10 billion years is a good first guess.

Geological timescale – Earth is 5(109 years old determined by radioactive dating techniques using Thorium and Europium suggests an age for the Milky Way galaxy of about 10(109 years.

The best method to determine the age of the Galaxy is to study the stars in globular clusters, which contain the oldest stars in the Galaxy.  Basic method: determine how long it takes for low mass stars to burn their core hydrogen, and thereby move off the H-burning main sequence.  By observing all the stars in Globular Clusters and comparing theory against observations, we can estimate the ages of globular clusters.  Until Hipparcos, the age estimate for Globular Clusters (14.6 ( 1.7) ( 109 Yrs.  This produced an ‘age problem’ – The age of the G.C.s was older than the age of the Universe (as determined from Ho) as a whole which is of course, impossible! 

Re-calibration of the distance scale using RR-Lyrae stars with Hipparcos data suggested that the G.C.s were farther away than had been previously thought, and therefore appeared dimmer, but were not as old (brighter but further away ( burning H faster ( younger).  The age of the G.C.s was revised downward:

Age of G.C.s = (11.5 ( 1.3) Gyr 
using a sample of 17 Globular Clusters

This provides a firm lower limit on the possible age of the Universe.  (the Universe can’t be younger than objects within it!)

Can improve this theoretical estimate by allowing for some deceleration.

For a matter-dominated, k = 0 solution:
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(4.20)

i.e.
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to = 2/3 Ho-1 = 6.51 h-1 ( 109 yr





(4.22)

If h = 0.7, then to = 9.3 ( 109 yr

to obtain an age of 11.5 Gyr (as provided by Globular Clusters), then h < 0.57.

(Including errors, an age range of 10.2 to 12.8 Gyr gives Ho = 51-64 kms-1 Mpc-1)

Assume Globular clusters take 1 ( 109 yrs to form, then an ‘age crisis’ occurs.  We would need Ho < 60 to give an age for the Universe in agreement with those for G.C.s and cluster have to form.

The way to resolve this is to invoke the Cosmological constant, ( and then to > Ho-1.

From the SNe Project:

Age of the Universe at present time is to = 14.9 
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And resolves the age crisis.

We will assume to = 15 ( 1 Gyr.
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