3. Cosmological Models

Friedmann Equation
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(3.1)

Which governs the time evolution of the scale factor a(t)

Fluid Equation
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(3.2)

Which gives us the time evolution of the mass density ((t)

[Note: although we derived these using Newtonian physics, these are the real equations used by Cosmologists, but are more traditionally derived from GR.]

Before finding their solutions we can study some of their implications.

3.1 Hubble’s Law

Naturally arises from the Friedmann Eq that v ( r

Recession velocity 
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(3.3)
using 
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 And remembering that the co-moving position x is constant by definition.

Thus Hubble’s law 
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 tells us that the constant of proportionality, the Hubble Parameter, H is defined as H = 
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(3.4)

And the value measured today is denoted Ho.  H is positive, not negative, as the Universe is expanding, not contracting.

Note: The term ‘Hubble constant’ is misleading.  It is constant in space (C.P.) but no reason for it to be constant in time.

Now re-write the FE (setting c = c2 = 1) as:
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using the Hubble parameter term, H in place of a, and is a function of time.  Use the Hubble constant, Ho for its present day value.

Normally the Hubble parameter decreases with time as the expansion is slowed by the gravitational attraction of the matter in the Universe.

3.2 Expansion and Redshift

Redshift of spectral lines can be related to the scale factor, a by making a simplifying assumption that light (a photon, () is passing between 2 objects A and B that are very close together, separated by small distances, dr
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From Hubble’s law their relative velocity dv will be
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(3.6)

As the two points A and B are close together, we can directly apply the Doppler formula to say the change in the photon’s wavelength, ( between emission and observation 
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(3.7)

where d( is positive since the wavelength, ( is increasing.  Time between emission and observation is given by the light travel time, 
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(3.8)

Integration gives ln ( = ln a + constant , therefore ( ( a.

Where ( is now the instantaneous wavelength measured at any given time.

Although this has been derived simply by using objects close together, it turns out to be completely general – it says that as space expands, wavelengths become longer in direct proportion.  The wavelength is being stretched by the expansion of the Universe.  The change in wavelength tells us how much the Universe has expanded since the light left its source (e.g. a distant galaxy or object).  So if ( is doubled, the universe was half its size when the photon was emitted.

Redshift, z is related to the scale factor, a by:
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(3.10)

e.g. Some of the most distant objects known have z = 5, so the Universe was (1+z) times smaller = 6 times smaller when the light was emitted.

3.3 Solving the Equations

To do this we need to specify the relationship between the mass density, ( and pressure, P – the equation of state.

Consider 2 possibilities:

(1) Simplest assumption: Pressure, P = 0 so the material exerts negligible pressure and is a good approximation for atoms in the Universe once it has cooled down.  The particles are well separated and seldom interact.  Also applies to galaxies in the Universe as there are no interactions between galaxies except for gravitational ones.  Non-relativistic matter, often referred to generically as dust. For dust (general term for matter) P = 0

(2) Radiation – Particles moving at speed c and have K.E. which leads to a pressure force: 
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 Any particle moving at highly relativistic speeds will have this equation of state, including neutrinos.

3.3.1 Matter-dominated Universe and assume curvature k = 0 (i.e. flat geometry)

Solve the fluid equation:


[image: image18.wmf](

)

30

a

a

rr

+=

g

g


and re-writing in a clever way, we can solve it
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(3.11)

Integrating 
(a3 = constant

 i.e. 
( ( 
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Which is not really very surprising.  Density falls off as the volume of the universe expands.

The form of the equations is unchanged with k = 0, if we multiply the scale factor, a by a constant since only 
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 appears, so we can re-scale a as we choose.  Usually we let a = 1 at the present epoch.  This means that physical and co-moving coordinate systems coincide at the present time since r = ax.  We denote the present day value of quantities by a subscript 0.

Present day value of (o ( constant
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(3.13)

We now have the evolution of ( in terms of a, but we still need how a varies with time using the FE


[image: image24.wmf]2

3

8

3

o

aG

aa

r

p

æö

ç÷

=

ç÷

èø

g


with k = 0.   Or equivalently  
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(3.14)

This can be solved formally but the simplest way is to assume a power law relation: a ( tq [this is the usual case in cosmology].  This gives the LHS the time-dependence of t2q-2 and RHS t-q.  To solve this, these have to match so q = 2/3.  The solution is a ( t 2/3 .  At the present time t = to and a = 1, so the full solution is
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(3.15)

In this solution, the Universe expands forever, but the rate of expansion H(t) decreases with time.
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(3.16)

decreasing infinitely slowly as the Universe becomes infinitely old.  Despite the pull of gravity, material in this universe does not re-collapse but expands forever.  This is one of the classic cosmological solutions with k = 0.  Other solutions do not necessarily have k = 0.

3.3.2 Radiation-dominated universe

Radiation obeys 
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Or equivalently  
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(3.17)

Using the same trick as before, with a3 replaced by a4 in eq (3.11)
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(3.18)

Repeating the analysis used in the Matter-dominated case gives: 
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(3.19)

This is the second classic cosmological solution.  The universe expands more slowly if it is radiation-dominated than it does if matter-dominated.  This is because the pressure supplies extra deceleration.  Remember the acceleration equation (2.18)
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It is wrong to think of pressure ‘blowing’ the universe apart.  In each case the density of material falls off as t2.  Where does the extra power of the scale factor, a come from?  The fall off in radiation density with volume drops as the 4th power of the scale factor.  Three of these powers come from the expanding volume leading to a drop in density.  The 4th power is due to the stretching of the wavelength of light.  This stretching is proportional to scale factor, a. Energy, E = hf means a further drop in energy by the remaining power of a.  This lowering of the energy is exactly the redshift effect we use to measure distances.

The rate of decrease of the radiation density can also be explained using thermodynamics (macroscopic).  Since the universe has a pressure, expansion means there is work done = PdV
(Analogy: work done on a piston when gas is allowed to expand and cool).  The work done corresponds to extra lowering of the radiation density by the final power of a.  (The universe cools as it expands).

3.3.3 Mixtures of Matter and Radiation

Let’s now consider a mixture of matter and radiation.  We need to use two separate fluid equations – one for each component:

(m ( 
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(3.20)

but only one Friedmann Eqn which now has

( = (m + (r









(3.21)

The scale factor will have a more complicated behaviour, i.e. to convert ((a) into ((t) is much harder, but can obtain exact solutions.

Consider a simpler case where one component dominates.  We can then use our solutions to the Friedmann equation for that dominant component, i.e. use expansion rates already found.  

If radiation dominates then

a(t) ( 
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(3.22)

(m falls off more slowly than (r  ( situation where radiation dominates cannot last forever.  Even if (m is very small, it will eventually dominate over radiation.  Therefore radiation domination is an unstable situation.

Now consider the case when matter dominates:

a(t) ( 
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(3.23)

We can see that matter-domination is a stable situation – it will become more and more dominant over radiation as time increases.  We can illustrate this:
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Figure 3.3.3 illustrates the evolution of the densities of matter and radiation in a universe containing a mixture.

Later on when we come to consider the early universe, we will see that this situation applies to our own universe and that the radiation to matter-dominated transition occurs at the time the Cosmic Microwave Background (CMB) was formed.  The last time radiation dominated over matter was t ~ 3(105 yr. 

3.4 Particle Number Densities

We can also consider density evolution of particles in terms of their number density, n = number of particles in a given volume.

If mean energy per particle = E, and energy density = ( then ( = nE.

(3.24)

This is useful because in most cases, the number of particles is conserved. E.g. if particle interactions are negligible or conversely if the interaction rate is very high, there is a state of thermal equilibrium (same rate in the backwards or forwards direction), so n is conserved.

Overall we expect the number of particles to be conserved.  The number density therefore will only change as the volume of the universe increases.  This implies

n ( 
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i.e. now have a-3 dependence like that for matter, but can now be used for radiation also.  How come?  We can explain this by considering whether particles are relativistic or not.

In the case of matter:  particles are non-relativistic so the rest-mass energy (constant) dominates their energy

(m ( (m ( nmEm ( 
[image: image50.wmf]3

1

a

 ( constant ( 
[image: image51.wmf]3

1

a






(3.26)

But photons lose energy as the universe expands and their wavelengths are stretched, i.e. Er ( 
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(3.27)

Thus, the energy densities of matter and radiation evolve in different ways, their particle numbers evolve in the same way.  The relative number densities of different particles (e.g. electrons, e- and photons, () stay constant as the universe expands.

3.5 The Fate of the Universe

Friedmann’s Equation:
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(with c = 1)

The universe will have different fates depending on the value of the curvature, k.  

1) k = 0 and assume matter domination:

a ( t2/3 ; 
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 ( 0.  This implies the universe will stop expanding at infinity or 
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2) k = -1, ( = 0:
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No matter content – this universe expands forever at a constant rate:
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3) k = -1, ( > 0

If t is small, a is small, and ( is large ( 
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 term dominates, and the universe behaves like the k = 0 solution.  But if t is large, a is large, and ( is small, then the universe will behave like the ( = 0 case.
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In general, can we make the universe stop expanding if k < 0?  In order to stop expanding we need to have
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 But both terms in the Friedmann equation are positive if k < 0 so the universe will expand forever if k is negative.  Such a universe has an open (hyperbolic) geometry.

4) k > 1, ( > 0:

In this case we can make the universe stop expanding.  At some time, t
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This is inevitable since ( ( 
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 and so as t becomes large the 
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 term will become more important.  The universe expands at an increasingly slower rate, eventually stops and contracts because of the gravitational attraction ( Closed universe.

Putting the three behaviour profiles together: 
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We are in the early phase of (accelerated) expansion at the present epoch.  Observationally it is very difficult to work out the value of the curvature, k.

The three different behaviours can also be related to the particle energy U (eq 3.7) in the Newtonian derivation of the Friedmann equation:

( T + V ) = 
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If U is positive, KE > PE ( the particle will escape to infinity.

If U is negative KE < PE ( the particle will not escape, gravitational attraction.

If U = 0 then KE = PE and the particle can just escape with zero velocity – reaches r = ( with 
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 = 0, equivalent to the escape velocity.

3.6 The Geometry of the Universe

In the Friedmann Equation  k corresponds to the curvature or geometry of the universe when the derivation is done in GR.  There are three possible geometries depending on whether k is +1 (closed), 0 (flat), or –1 (open hyperbolic).

3.6.1 Euclidean or Flat geometry (k = 0)

In a flat geometrical space:

· Angles of a triangle add up to 180o
· The circumference of a circle = 2(r
· Parallel lines stay a constant distance apart

A universe with a flat geometry  is called ‘Flat’ and must potentially be infinite in extent.  Edges would violate the Cosmological Principle.

3.6.2 Spherical Geometry (k > 0)

Consider the surface of the Earth as the 2D equivalent of a 3D universe:

· Angles of a triangle add up to more than 180o
· Circumference of a circle is less than 2(r
· Parallel lines converge (i.e. lines of longitude converge at the poles)

The Earth’s surface is closed and finite in extent with area A = 4(r2 but has no boundary or edge to its surface.  (On Earth we usually use Euclidean geometry for small distances << the size of the Earth as an approximation when we don’t have to worry about its spherical curvature).

This means it is difficult to measure the geometry of the Universe as the small fraction we can observe will obey nearly Euclidean laws.  The 3D universe will have properties similar to the 2D surface of a (very large) sphere.  A spherical universe (like the surface of the Earth) is finite in extent and closed, but has no boundary.  If we travelled in a straight line, we would eventually end up back where we started.  A positive value of k corresponds to a spherical geometry, and such a universe would eventually re-collapse in a ‘big crunch’.

3.6.3 Hyperbolic Geometry (k < 0)

A saddle-like surface in 2D is the opposite of spherical geometry.

· Angles of a triangle add up to less than 180o
· Circumference of a circle is greater than 2(r
· Parallel lines diverge

Because of this last property, this geometry is open and such a universe will be infinite in extent.  Also it would expand forever.

Summary:

k < 0 ( Open universe, expands forever

k = 0 ( Flat universe, expands forever

k > 0 ( Closed universe, re-collapses in a ‘big crunch’

In an infinite universe, it is infinite in extent but we will only ever see a small portion of this corresponding to the observable universe (point where the recession velocity = c).  An infinite universe can still expand.  Analogy: The set of integers from an infinite set, but you always multiply by another number, eg. 2, to get a new infinite set where the separation between the numbers becomes twice as large.
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